ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

»
[)

<
0
e m I
Autonomous Systems Lab
Prof. Roland Siegwart

Semester Thesis

Autonomous MAV
Exploration with
Reinforcement Learning

Autumn Term 2020

Supervised by:
Marius Fehr
Alexander Millane

Author:
Hokwang Choi

Declaration of Originality

I hereby declare that the written work I have submitted entitled
Autonomous MAV Exploration with Reinforcement Learning

is original work which I alone have authored and which is written in my own words.*

Author(s)
Hokwang Choi
Student supervisor(s)

Marius Fehr
Alexander Millane

Supervising lecturer

Roland Siegwart
With the signature I declare that I have been informed regarding normal academic
citation rules and that I have read and understood the information on ’Citation eti-
quette’ (https://www.ethz.ch/content/dam/ethz/main/education/rechtliches-

abschluesse/leistungskontrollen/plagiarism-citationetiquette.pdf). The
citation conventions usual to the discipline in question here have been respected.

The above written work may be tested electronically for plagiarism.

D oich 20,12 200 4 FCC . Howas Cho

Place and date Signature

1Co-authored work: The signatures of all authors are required. Each signature attests to the
originality of the entire piece of written work in its final form.

Contents

Abstract
Symbols
1 Introduction

2 Background

3 Methods
3.1 Environments
3.2 Data preprocessingo e
3.3 Actionspace
34 Rewardsystem
3.5 Episodescenarioo e
3.6 Hyper-parameters e
3.7 Evaluation criterion oo
4 Experiments
4.1 Trainingo
4.2 Random map generation effect 00000
4.3 Methods comparison L Lo
5 Result and Discussion
5.1 Integrated simple global planner
5.2 Analysis of detailed moves Lo
5.3 Robustness

5.4 Supplementary study
6 Conclusion

Bibliography

ii

iii

10
10
11
11
11
11

13
13
13
13

17
17
17
19
19

21

24

Abstract

The essential part of exploring an unknown area with a robot is the ability to
build a map thoroughly and fast. Mostly, current solutions use the global map to
plan a path and it incurs a lot of computation time. To alleviate this problem,
we use the local map to focus on the local exploration which is much faster and
cheaper than the global exploration. As soon as the local exploration is finished,
the global planner can be called again to send the robot to a new position to start
a local exploration again. In this paper, we suggest a policy network trained with
the deep reinforcement learning algorithm to explore a 2D area. Using only the
local map around the robot, the network decides the best action based on a trained
network. This local exploration method offers an instantaneous decision on path
planning and guarantees a consistent speed as the input for the network is a matrix
of fixed size. We provide a detailed explanation of the robot’s moves and possible
exploration scenario in the simulation. The computation time test showed that the
action decision can be made with the frequency of 50Hz for a given map of size
128x128.

iii

Symbols

S, T, Q state, reward and action
Q state-action value function
L loss function

y target function

A advantage function

1% state value function

A action space

~y discount factor

0,a, 3 parameters of a network

€ exploration fraction

) temporal difference error
X matrix representation of a submap
Indices

J step number

m policy

Acronyms and Abbreviations

SLAM Simultaneous Localization and Mapping

RL Reinforcement Learning

DQN Deep Q-Network

CNN Convolutional Neural Network
USAR Urban Search and Rescue

RRT Rapidly-Exploring Random Tree
ESDF Euclidean Signed Distance Field
TD Temporal Difference

Chapter 1

Introduction

These days, researchers try to solve the challenges of exploring an unstructured and
cluttered area with a robot. To navigate through an unknown area like “Fig. 1.17,
the robot should be able to make a map around it and plan a path to discover a new
area. This project introduces a new approach in this exploration problem. Incor-
porating the dense mapping technique and the reinforcement learning algorithm,
we train a model which can decide the best action only looking at a local map.
This approach will enable the robot to explore the unknown area fast and efficient.
Even though we focused on the 2D exploration in a simulated environment, it will
be a step to bridge the exploration problem with the reinforcement learning. This
project could be conducted thanks to the dense mapping solution Voxblox [1] and
the open source reinforcement learning environment by OpenAI Gym [2] and Stable
Baselines [3].

Figure 1.1: The quadrotor is deployed to make a map of the tunnel. With a limited
battery capacity, it needs to travel the unknown area fast and efficiently while
building a map.

In highly cluttered and unstructured environments where human access is limited,
the autonomous exploration with a robot is essential. By autonomous exploration,
we mean that the robot navigates an unknown area itself and build a map. Since
the operation time is always limited by the battery capacity, the autonomous ex-

Chapter 1. Introduction 2

ploration should be conducted efficiently and fast. In this circumstance, the most
fundamental abilities of the robot is mapping and path planning. While SLAM
techniques [4] enable the robot to build a map when it is travelling, we can use the
map to devise a navigation strategy.

So far, wide range of research have developed methods for the autonomous ex-
ploration with a map which is built by the robot. For example, frontier-based
exploration has been widely used for USAR search missions [5], [6], [7] and [8].
Frontier-based exploration was first introduced by B. Yamauchi, where the robot
travels based on the boundary between the known and the unknown area which is
called the frontier [9]. With this approach, a map is built in a global sense and the
frontier is selected as the next goal position to go. Also, in the autonomous explo-
ration, RRT method [10] is used to plan a path for exploration. Following the tree
of possible trajectories, the robot navigates the area avoiding the obstacles [11], [12].
To improve the RRT method, [13] used the history of exploration to boost the RRT
planning performance. However, in both methods, the global map should always be
used for path-planning and the amount of computation grows as the discovered map
becomes bigger. These methods can be powerful as a global planner but it faces the
limitation in the sense of fast local exploration. To solve this issue, [14] suggested
a local exploration strategy based on the frontier-based method. Focusing on the
local map could speed up the navigation process overcoming the slow computation
and making fast moves. Here, the idea is to call the global planner only when the
fast local exploration has no more frontiers to travel. See “Fig. 1.2”. However,
the limitation still exists since the robot blindly follows the local frontiers and the
actual navigation includes wasteful moves. For example, the robot in a room would
check every corner until there is no more unknown voxels left, while the smart robot
would notice the corner without looking into it and make a smooth turn to another
corner. To decrease the wasteful moves and improve on smart moves, we introduce
a reinforcement learning algorithm to learn the efficient moves directly from the
local map which is provided by a dense mapping technique Voxblox [1]. Given an
action command, Voxblox provides 3 different information: 1.The local submap of
the size 128x128, 2. The number of newly discovered voxels, 3.The collision warning
information when the robot tries to go too close to an object.

Local exploration Fast, cheap
switch
/

Global map Global exploration Slow, expensive

Figure 1.2: Comparison between the global and the local exploration. The global
planner is very costly in computation and it incurs the slow movements of the robot.

Recently, the reinforcement learning has shown successful results in broad areas of
games, control, and robotics. Especially, V. Minh et al.[15] has shown that RGB
images can be directly used as inputs to the deep neural network which enables

the agent to understand the semantics of the system to achieve a human level
performance in playing games. Since the mapping in SLAM is based on building
images, we bridge the concept of playing Atari games with the exploration problem
in unknown spaces and train a RL agent with maps provided by the mapping
technique Voxblox [1]. In this paper, we focused on the 2D environment to verify
the validity of the reinforcement learning algorithm in the exploration problem. The
output map from Voxblox is ESDF's of the local map. ESDF represents the geometry
of the field where each voxel value means the distance to the nearest surface of the
structure. Voxel values are positive when they are outside the object and negative
when they are inside the object. Specifically, the known and the unknown areas are
distinguished by voxel values. However, to be used as a raw input for our neural
network policy, the provided map includes noises and continuous values from the
raw data limit the simplicity of the expression of the map. To solve this issue, we
preprocess the given image with a CNN auto-encoder and extract the necessary
information into binary values. Then, we use these simple state representations as
inputs for the RL algorithm. RL methods have also been used to incorporate with
the frontier-based method to select the best frontier position [16], [17]. However,
without relying on the frontiers, we directly use the map as the input and train the
RL agent to make smart action decisions. See “Fig. 1.3”.

State

-

Action

Figure 1.3: With a given local map as a state, the RL agent trained with DQN
algorithm decides the best action based on the Q-network. The action space is
{Up, Down, Right, Left}.

In the model-free reinforcement learning problem [18], the agent learns the optimal
action in such a way that it maximizes cumulative rewards in one episode. The
reward encourages the agent’s learning process and it is an essential part of designing
a reinforcement learning problem. The reward values have different possibilities
from binary to continuous. To frame the exploration problem into a reinforcement
learning environment, proper understanding of the goal in exploration is a primary
step. For the exploration problem, however, its goal is an abstract concept which
is ‘building a whole map thoroughly and fast’. This includes detailed movements
of avoiding obstacles, passing through a narrow path, continuous travelling to a
new place and further more. These implicit goals make sense for a human but it is
hard to make a control system which collaborates with all small goals. Even though
the exploration is an integrated task, we can extract these essential features from

Chapter 1. Introduction 4

the map and focus on each goal with a proper set-up of the reinforcement learning
problem. First, we should always prefer to go somewhere unknown and it is better
when we can discover more in one action. Second, we should not collide with an
obstacle but avoid it instead. Third, staying at already discovered area should be
discouraged. Based on these three goals, we design a reward system and train an
agent.

Chapter 2

Background

Action
at

Figure 2.1: Overview of the reinforcement learning system.

In general, reinforcement learning system can be explained by Markov Decision
Process (MDP). At a given state Sy, when the agent takes an action a;, the envi-
ronment gives back a reward r; and the next state S;;1 in “Fig. 2.1”7. By definition,
the transition of Markov state is only with respect to the current state and the next
state. These consecutive processes continue until the episode is finished while up-
dating the policy or the Q-network. Repeating the episodes, the agent is preferably
looking for the bigger cumulative rewards and the policy is updated in different
ways depending on the type of the algorithms. The presented approach utilizes
Deep Q-network (DQN) developed by V. Minh et al. [15]. In this method, CNN
structure is used to approximate the state-action value function, Q(s, a). Q-function
is equally informative compared to the policy network since we can already select
the best action which incurs the highest expected value of the cumulative rewards.
Then, based on the e-greedy policy, the state is mapped into an action. This policy
selects a random action with probability e. The stochastic policy is appropriate in
our situation as it encourages exploration which might send to a new state leading
to a bigger reward in an episode. This stochasticity is essential in our case since
the robot can easily get stuck anywhere. Also, in a given map, there is not just one
way to explore the given space but multiple strategies for explorations are possible.

Chapter 2. Background 6

For the reinforcement learning problem, the system is defined by observation space,
reward and action space. These three components are the most important designs
to define a RL system. DQN algorithm assumes its input as images and CNN
structure interprets the situation based on the image change. Also, it preprocesses
the consecutive 4 images into an internal state representation. This encourages the
network to get the meaning of motion and it can learn a policy from the conse-
quences of movements. In our exploration environment, we use local ESDF map
from Voxblox and convert it into two channel images. Both channels are represented
with 128x128 size matrix with two values. The first channel gives the information
of the frontiers and the second one gives the wall information. Here, we should
notice that this state representation is very implicit information. Given a state,
by taking a certain action, we cannot expect a specific transition to another state
since we do not know the map. When the agent updates the policy based on the
transition experiences, there are several sub-goals. In [19], the concept of the in-
trinsic motivaiton is well explained in the problem of exploration. Firstly, the robot
has to catch the meaning of every action. It means that the robot has to learn
the consequences of the action by trying. Secondly, the robot has to learn to avoid
the walls and the objects to navigate the space. Lastly, the robot should always
try to go forward to the unknown area. To achieve these sub-goals, a sophisticated
rewarding system is necessary. Our reward system is based on the number of newly
discovered voxels which quantify the size of the area the robot has discovered in a
given step. To prevent a collision with a wall and to discourage the robot staying
at the same position, negative rewards are given in two cases. For action space,
we restrict it in four discrete actions(up, down, right and left) with a magnitude
of 0.5m. This restrictive action space is inevitable since the state representation is
implicit and we have to rely on the DQN internal state representation for the agent
to capture the meaning of each motion. Details are explained in section 3.

The goal of the RL agent is to maximize the cumulative rewards at time ¢

R, = Z'yT_trT (21)

toward the end of the episode at time T'. Discount factor v for the future reward is
introduced for the simplicity of mathematical expression and to stress the impor-
tance of immediate rewards. It also avoids the infinite reward in a cyclic system.
However, without the knowledge of consequence of an action at a certain state, we
cannot get the cumulative future reward directly. According to [15], Q-network is
approximated with CNN structure which maps a state and an action into an ex-
pected reward sum. For each action step, one move with a given reward is saved
in a buffer and these experiences are randomly selected to update the Q-function
based on a natural gradient descent method. Here, the loss function is defined by
the parameter 6 as a network representation,

L(0) = (y; — Q(s5,a;0))°, where (2.2)
y T for terminal ;41 (2.3)
J r; +ymaxg Q (sj41,a;60) otherwise ’

The network parameter 6 is changed whenever the gradient descent is performed for
Q-network update. For a gradient descent update, it randomly selects experience
transitions (s, a;,7;,5;41) from the experience buffer with a minibatch size. Here,
s; means the internal state representation which is preprocessed with 4 consecutive
observation inputs. This internal state representation is a crucial part for the agent

to capture the meaning of a motion. In this way, Q-function is approximated and
the e-greedy policy selects the best action,

a = maz,Q(s,a;0) (2.4)

with probability 1 — e.

On top of this DQN algorithm [15], we utilize four extensions of this algorithm.
First, Prioritized Experience Replay [20] is used. Instead of randomly choosing an
experience from the buffer, the experience is prioritized based on a TD error,

6 =y; — Q(s5,a5;0) (2.5)

High TD error means that this experience gives more information for learning.
Also, prioritizing these experiences can speed up the learning process since the
agent frequently learns more important moves.

Secondly, we use Double-Q learning [21]. In Q-learning process, each gradient de-
scent updates the network parameter §. However, changing 6 in every update can
result in overestimation of Q-function [21]. To prevent this issue, double Q-learning
introduces two Q-functions. By holding the target function with the parameter
Otarget, it performs gradient descent with the online network parameter Ooniine.
The target function and the online Q-network are as follows:

y; =1 + ymaz,Q (S +1, & Orarget) (2.6)

Q(Sjaaj;eonline) (27)

After a given number of updates, 0:qrget is synchronized with 0oy ine. We synchro-
nize the parameters every 500 updates.

Thirdly, Dueling Network [22] introduces a new network structure. The advantage
function means the benefit you get by taking a certain action with a given policy =
and state-value function V7 (s) = E,wr(s) [Q7 (s, a)], which is expressed as:

A" (s,a) = Q"(s,a) = V7 (s) (2.8)

Here, we use the fact that the expected value of the advantage function with the
optimal policy is zero.
Earwr(s) [Aﬂ-(sv a’)] =0 (29)

Using two more network parameters « and 5, Q-function is approximated with a
sum of the state-value and the advantage function.

(A(s,a;O,a) - ﬁ Y our A(s,a’;&,a)) (2.10)
Lastly, Noisy Networks for Exploration [23] is used to encourage further exploration.
This method perturbs the network weights with a noise and the consequence is that
it encourages the exploration to reach the global optimum.

Chapter 2. Background

Chapter 3

Methods

3.1 Environments

As our reinforcement learning environment, we used OpenAI Gym [2]. It supports
various algorithms and the customized environment can be shared, so it is bene-
ficial for the reproducibility of the reinforcement learning problem. For our dense
mapping technique, we used Voxblox [1] which is operated in Robot Operating
System(ROS) [24]. Two environments communicate when the robot takes a step.
Overview of these environments is shown in “Fig. 3.1”. Using ROS topic broadcast-
ing system, the Gym environment gives an action command and Voxblox returns
necessary information to feedback new observation and reward. This information
is composed of local maps, number of newly discovered voxels and collision infor-
mation. By ‘collision’, it is a detection system when a robot tries to go too close to
an object. It is only a warning system which will be later used to set up the reward
system.

Environment —

/ \ D -
Output Observation !

- Submap Data Processing
- New # of voxels v Reward

- Collision info

oy
cee Agent
SLAM m $:ROS ®openar | Deep Q-Ngetwork(DQN)

voxblox

A(:tion4 + > -

Input

\ - Transfer function /

Figure 3.1: Overview of environments

Chapter 3. Methods 10

3.2 Data preprocessing

A local map given by Voxblox package is ESDFs around the robot. To reduce
the noise and make reliable binary data, we use a CNN auto-encoder and a color
mapping scheme. Our auto-encoder is mainly used to smooth the map and keep
the information in the map. Before we give inputs into auto-encoder, the raw map
is first masked to differentiate the known and the unknown area. Then, we have
two channels as our inputs. For the auto-encoder output, we only get one channel
which is similar to the original map. After training with 5000 sample maps, a
reliable auto-encoder is obtained. In “Fig. 3.2”, we can see the map is smoothed
and de-noised. After that, this data is further processed to generate an observation
for our reinforcement learning agent. After normalizing the map values into [0, 1],
color mapping scheme is performed to extract near wall information,

Xnew = 255 - min(max(4(Xoq — 0.25),0),1) (3.1)

Here, all the values are calculated in element-wise and mapped to integer. The
effect of it is shown on top of ‘Data Processing’ in “Fig. 3.1”. Then, we extract
only the wall information with a threshold value. This threshold is obtained with a
heuristic way considering the thickness of the wall in the image and the amount of
noise. Since we still have the mask map, we concatenate these two maps and use
them as observation for RL agent. The final observation for the agent is shown as
‘Observation’ in “Fig. 3.17.

N
Input Channel Submap Input Channel Mask Decoded Map

Figure 3.2: Auto-encoder processing

3.3 Action space

In 2D exploration problem, the robot can move on a plane. However, loading a
local map with high frequency is computationally costly and it will slow down the
exploring system . For our agent, we use discrete action space of size four. This
space is defined as {Up, Down, Right, Le ft} with the magnitude of 0.5m in a global
frame. The magnitude of action depends on the size of voxels which we set as 0.2m.
Appropriate action magnitude is imperative for the agent to understand the seman-
tics of movements. If the action magnitude is too large, it will lose the movements
since the observation spaces will not have any translational relationship. The small
discrete action space is chosen to reduce the number of possible trajectories and it
is also beneficial to find more efficient trajectories. Alternatively, we experimented
with action space of size eight including the diagonal moves. However, it did not

11 3.4. Reward system

learn the efficient moves and it made zagged moves which should be avoided in
a real robot. Also, continuous action space is considered with Soft Actor-Critic
method [25] - [26] and Policy-gradient method [27], but the agent could not make
any progress in learning. Presumably, the observation space we have as the state
of the agent is too implicit to learn the meaning of motions with continuous action
values. Also, the best action with a given observation cannot be converged since
the global map is unknown and the robot does not know what it can expect from
taking different magnitude of actions.

3.4 Reward system

Compared to most Atari 2600 games, our agent’s goal is not just surviving and
collecting points. Rather, our agent should prefer discovering the area as much as
possible and finish the episode when it is stuck at the dead end. Then, we can call
the global planner to send the robot to a next position to start again. Additionally,
in our case, discovering a bigger area should be rewarded more than discovering a
small area. Since we get the number of newly discovered voxels from Voxblox, this
becomes our criterion to give a reward to the agent. Considering the depth sensor
range and angle, we scale the reward in a magnitude of 100. When a collision
happens, even if the robot discovered new voxels, we give a negative reward of
-20 because it is not desired to go forward to an object. Also, when the robot
does not discover any new voxels, it is penalized with negative rewards growing
proportionally. This reward system is designed to encourage the agent to always
prefer a new exploration rather than easily getting stuck with a local minimum.

3.5 Episode scenario

How to finish an episode is a crucial component in our exploration system. Since
there is no point in getting stuck and obtaining no information, we finish the episode
when it does not discover any voxels for thirty consecutive steps. Also, if the agent
is consecutively running into a collision status more than five steps, we finish the
episode. The numbers are chosen to give the agent a chance to learn how to get
out of the situation which might lead to a bigger reward. Since we have to compare
the reward of each episode, we also limit the maximum steps as 500 in one episode.
However, for validation purpose after training, we can change the parameters to
define an episode. For example, in a real situation, we might change the maximum
collision number as one.

3.6 Hyper-parameters

Parameters for our DQN algorithm are described in “Table. 3.17. As extensions of
DQN algorithm, we use 1.Prioritized Experience Replay [20], 2.Double Q-learning
[21], 3.Dueling Network [22], 4.Noisy Networks for Exploration [23].

3.7 Evaluation criterion

For our exploration problem, evaluation of the performance is hard to be defined.
To solve the generalized exploration problem, we randomly generate objects in a
map and place the robot in a random position. Then, we evaluate the cumulative
reward for an episode. Howevery, this is very noisy data since it highly depends on
the structure of the map and the position where the agent is spawned. Thus, an

Chapter 3. Methods 12

Table 3.1: Parameters

Variable value
Discount factor ~ 0.99

Learning rate 0.0005

Buffer size 1 million

Exploration fraction e 0.2
Training frequency 10
Batch size 32
Target network update frequency 500

absolute evaluation is limited with the cumulative reward and the human evaluation
is also necessary. To evaluate the agent, we first check the smoothed cumulative
reward for every fixed map. When the reward grows over a same map, it means that
the agent is learning meaningful moves in the map. To check the agent’s quality,
we run the simulation to see if the agent makes sensible moves in every situation.

Chapter 4

Experiments

4.1 Training

Once the reinforcement learning model is trained, we only use the trained policy
network to navigate in a place. Therefore, robustness is crucial in training process.
To generalize our solution for exploration in any place, we change the map every
10000 steps and spawn a robot in a random place every episode. The original 3D
map is generated with cylinders, spheres and cubes. Then we fix the level of height
and it becomes our 2D map. The training progress is checked with rewards, loss and
TD error. Here, the important measure is rather the tendency than the magnitude
of rewards. Training progress can be viewed at https://youtu.be/ZiqzRN5-1p8.

4.2 Random map generation effect

To see the effect of different maps, we compared the rewards, loss and TD error over
100000 steps. From “Fig. 4.17, we can see the magnitude of rewards per episode can
vary depending on the map structure. However, in all cases, loss function decreases
over time steps and we can verify the learning process is conducted correctly. TD
error in “Fig. 4.1” shows that the effect of random spawning in a same map at each
episode. If it started at the same place in every episode, TD error would decrease
because it would explore and find a good way to travel. Since our aim is focused on
general exploration, we start at a different position at each episode and the effect of
random start shows that TD error can increase because the robot has more freedom
to make a different trajectory which cannot be predicted.

4.3 Methods comparison

Additionally, we trained agents using different deep reinforcement learning algo-
rithms. DQN is compared with Asynchronous Actor Critic(A2C) [25], Proximal
Policy Optimization(PPO2) [27] and Actor Critic with Experience Replay(ACER)
[26] methods. Over 50000 action steps, reward is compared in “Fig. 4.2”. The map
is changed every 10000 steps and the qualitative evaluation is performed after the
training. A qualitative evaluation is performed by looking at the agent’s moves
to check the quality of acions. Even though the reward can be gained with the
one-directional movement, we could verify if the agent is actually learning with a
qualitative evaluation. As we could expect from “Fig. 4.2” only DQN algorithm
succeeded to learn. Possible explanation for this result can be from key aspects of
DQN algorithm. First, DQN algorithm is possible to catch the meaning of motion

13

Chapter 4. Experiments 14

reward

1.6e+4

1.2e+4

8e+3

4e+3

0 20k 40k 60k 80k 100k Steps

loss
120

100
80
60
40

20

0 40k 80k 120k Steps

200

100

0 20k 40k 60k 80k 100k SIEPS

Figure 4.1: Rewards per episode (top), Loss function (middle) and TD error (bot-
tom) for randomly generated maps

15 4.3. Methods comparison

with the preprocessed internal state representation. This is crucial in our case since
the robot makes actual movements and it results in different states which are local
maps. Second, the training process of DQN algorithm is based on the experience
replay. The previous transition experiences are kept in a buffer and Q-function is
updated based on the selected experiences from the buffer. Third, DQN algorithm
is an off-policy method. In Q-learning process, the target function is considered
with the entire action space rather than the action taken based on the policy. This
will respect the possible consequences of taking action at a certain state, and the
exploration can improve over episodes.

reward e
6e+3 [] ACER
I rrO2
B A2C
4e+3

2e+3 L/\

-2e+3
0 10k 20k 30k 40k 50k steps

Figure 4.2: Methods comparison

Chapter 4. Experiments

16

Chapter 5

Result and Discussion

5.1 Integrated simple global planner

The model is trained for 48 hours with 2.6GHz CPU for Voxblox simulation and
GeForce GTX 1650 (GPU) to update neural networks. The robot learned with 2.15
million action steps. To see the intended behavior of the whole 2D exploration, we
introduce a simple global navigation planner which sends a robot back to a position
where it discovered the largest number of voxels. The global planner is called when a
robot is stuck at a dead end or when a collision warning is on. From the point where
the robot is sent, local exploration is conducted again to continue discovering the
new area. The video is available at https://youtu.be/gdbOsvZIyTc. “Fig. 5.1”
shows the whole exploration calling the global planner twice.

Figure 5.1: Full exploration with a global planner. The robot initially started at
the top left position of the map and it called the global planner at each dead end
at the top right and the bottom right. Map size is 100m x 40m.

5.2 Analysis of detailed moves

Local exploration is always preferred since it can speed up the exploration process.
Our model could achieve impressive moves which overcomes the problem of follow-
ing the frontiers blindly. First, it managed to travel along a narrow path which
connects to another space. “Fig. 5.2” shows the robot passing through a narrow
path. Second, the agent learns how to ignore a trivially unknown area. For human,

17

Chapter 5. Result and Discussion 18

small unknown regions can be deduced by previous experiences when they have
certain patterns. For our agent, this region means a small amount of rewards if it
travels and discovers. Surprisingly, the agent learns how to think in long-term for
continuing an efficient travel. “Fig. 5.3” demonstrates the ability to travel efficiently
ignoring small immediate rewards. It is indeed beneficial when we want to have a
big picture of the map rather than small details. Those small regions can still be
discovered later when the global planner is called. The benefit of this behaviour is
mostly about the shortening of travel time which can save the battery of the robot
in a real situation. Additionally, the agent also learned how to see the reward far
in the future. When the local map does not show any unknown area nearby, we
can conclude that there is no information on the map. However, the agent could
expect a future reward in a specific direction and it travels back to where it came
from and continue travelling. This example is described in “Fig. 5.4”. Successful
learning of these detailed moves can be tremendously beneficial in a global sense of
exploration. The video can be viewed at https://youtu.be/V291v-nXfCU.

Figure 5.2: The robot passes through a narrow path.

Figure 5.3: The robot ignores trivial regions and goes down looking for a bigger
reward.

19 5.3. Robustness

Figure 5.4: The robot sees the future reward out of local map and traverses already
discovered region.

5.3 Robustness

Since we use a trained agent in real explorations, robustness is important to explore
a complete new world where the agent has no experiece with the area. To guarantee
the robustness, it is important that the agent actually learns the semantic meaning
of the given map such as walls, objects and possible paths. If the agent is trained
only based on a map shape, it would not be able to travel in a complete new map.
Through our validation process by exploring randomly generated maps, we could
verify that the agent actually learns the information of the map and not the map
itself. Several episodes for validation are available at https://youtu.be/XP9fBk-
kJzU. We can see that the agent is reacting to the wall and objects trying to discover
new areas.

5.4 Supplementary study

Especially, fast local exploration is very important since it can save the battery
of the robot and extend the range of the exploration. With our reinforcement
learning agent, the average action decision time is calculated as 0.02 seconds which
is 50Hz in frequency. This is the time taken from a given local map to make an
action command. This fast process can enable the robot to make consistent moves
without lags. Since the action command can be updated with 50Hz, we can lower the
magnitude of one action move and the robot will be able to make more sophisticated
moves in a crawlspace if needed.

Chapter 5. Result and Discussion

20

Chapter 6

Conclusion

This paper introduces a new local exploration strategy based only on a local map
around a robot. Using the dense mapping technique and the reinforcement learning
algorithm, we trained a model which can instantaneously make an action among four
directions on 2D environment. Surprisingly, the agent could also learn ingenious
moves as shown in 5.2 and explore the area autonomously. Especially, this method
is beneficial since the computation speed is constant as the robot explores more
space. It is based on the fact that we only input a local map to the agent and CNN
policy is already trained to decide the best action. Combined with a proper global
planner, the robot will be able to explore an unstructured and unknown area fast
and thoroughly. Since the robot is trained on randomly generated maps, the agent
has learned the general exploration strategy and we can expect it to travel in any
area.

Currently, this strategy is limited on 2D exploration. In the future work, we plan
to extend the space to 3D world and build an agent which can be deployed on aerial
vehicles. There are two possible approaches. First, using 2D exploration with a
fixed altitude, we can still call a 3D global navigator to change the level when the
robot is stuck on the 2D map. Secondly, we can also try to do autonomous 3D local
exploration based on the trained agent. In this case, the local map would have one
more dimension and we have to add at least two more actions to move in z-axis.
From a short experiment, the simulation in 3D space takes much more time than
2D exploration. Therefore, speeding up the simulation will be another challenge to
train an agent.

21

Chapter 6. Conclusion

22

Bibliography

(1]

[13]

M. F. J. N. R. S. Helen Oleynikova, Zachary Taylor, “Voxblox: Incre-
mental 3D Euclidean Signed Distance Fields for On-Board MAV Planning,”
arXiv:1611.03631, 2017.

L.P.J S J.S. J. T. W. Z. G. Brockman, V. Cheung, “OpenAl Gym,”
arXiw:1606.01540, 2016.

A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhari-
wal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman,
S. Sidor, and Y. Wu, “Stable baselines,” https://github.com/hill-a/stable-
baselines, 2018.

J. L. S. Thrun, Simultaneous Localization and Mapping. Springer, Berlin,
Heidelberg, 2008.

B. S. F. Niroui and G. Nejat, “Robot exploration in unknown cluttered envi-
ronments when dealing with uncertainty,” IEFEE, pp. 224-229, 2017.

W. B. S. Owald, M. Bennewitz and C. Stachniss, “Speeding-Up Robot Ex-
ploration by Exploiting Background Information,” IEFE, vol. 1, no. 02, pp.
716-723, 2016.

Y. L. B. Doroodgar and G. Nejat, “A Learning-Based Semi-Autonomous Con-
troller for Robotic Exploration of Unknown Disaster Scenes While Searching
for Victims,” IFEFE, vol. 44, no. 12, pp. 2719-2732, 2014.

C.S.G. L. Y. Mei, Y. Lu and Y. C. Hu, “Energy-efficient mobile robot explo-
ration,” in Proceedings 2006 IEEE International Conference on Robotics and
Automation, 2006, pp. 505-511.

B. Yamauchi, “A frontier-based approach for autonomous exploration,” in Pro-
ceedings 1997 IEEE International Symposium on Computational Intelligence in
Robotics and Automation CIRA’97, 1997, pp. 146-151.

S. M. LaValle, “Rapidly-exploring random trees: A new tool for path plan-
ning,” Iowa State University, 1998.

H. Umari and S. Mukhopadhyay, “Autonomous robotic exploration based on
multiple rapidly-exploring randomized trees,” IEEE, pp. 1396-1402, 2017.

U. S. S. O. M. B. A. Bircher, K. Alexis and R. Siegwart, “An incremental
sampling-based approach to inspection planning: the rapidly exploring random
tree of trees,” Robotica, vol. 35, p. 1327, 2017.

R. B. H. O. C. Witting, M. Fehr and R. Siegwart, “History-Aware Autonomous
Exploration in Confined Environments Using MAVs,” IEFE, pp. 1-9, 2018.

23

Bibliography 24

[14]

[15]

[16]

[17]

[18]

[19]

[20]

E. K. T. Cieslewski and D. Scaramuzza, “Rapid exploration with multi-rotors:
A frontier selection method for high speed flight,” IEFE, pp. 2135-2142, 2017.

D.S. A.G. 1. A. D. W. M. R. V. Mnih, K. Kavukcuoglu, “Playing Atari with
Deep Reinforcement Learning,” NIPS Deep Learning Workshop 2013, 2013.

Z. K. F. Niroui, K. Zhang and G. Nejat, “Deep Reinforcement Learning Robot
for Search and Rescue Applications: Exploration in Unknown Cluttered Envi-
ronments,” IEEFE, vol. 4, no. 02, pp. 610-617, 2019.

L. Tai and M. Liu, “A robot exploration strategy based on Q-learning network,”
IEEE, pp. 57-62, 2016.

A. Barto and R. S. Sutton, Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1992.

S. H. A. Aubret, L. Matignon, “A survey on intrinsic motivation in reinforce-
ment learning,” arXiv:1908.06976, 2019.

I. A, D. S. T. Schaul, J. Quan, “Prioritized Experience Replay,”
arXiv:1511.05952, 2016.

D. S. H. van Hasselt, A. Guez, “Deep Reinforcement Learning with Double
Q-learning,” arXiv:1509.06461, 2016.

M. H. H. v. H. M. L. N. d. F. Z. Wang, T. Schaul, “Dueling Network Archi-
tectures for Deep Reinforcement Learning,” arXiv:1511.06581, 2016.

B.P.J.M.1. 0. A. G. V. M. R. M. D. H. O. P. C. B. S. L. M. Fortunato, M.
G. Azar, “Noisy Networks for Exploration,” arXiv:1706.10295, 2017.

B.G.J.F.T.F. J. L. R. W. A. N. M. Quigley, K. Conley, “Ros: an open-source
robot operating system,” vol. 3, 01 2009.

M. M. A. G.T.P.L. T. H. D. S. K. K. V. Mnih, A. P. Badia, “Asynchronous
Methods for Deep Reinforcement Learning,” arXiv:1602.01783, 2016.

N.H. V. M. R. M. K. K. N. d. F. Z. Wang, V. Bapst, “Sample Efficient Actor-
Critic with Experience Replay,” arXiv:1611.01224, 2017.

P. D. A. R. O. K. J. Schulman, F. Wolski, “Proximal Policy Optimization
Algorithms,” arXiv:1707.06347, 2017.

